oldalak

Naprendszer

Története

Felépítése

Égitestjei

Gázóriások

Törpebolygók-

Holdak-

Üstökösök

 

 

 

Hírdetések

 




felhasznaló név

jelszó

Regisztráció

Eu- vonal

 

REKLAM

 

Törpebolygók

A törpebolygó a csillagászati terminológia legfrisebb kifejezése, az égitestek osztályozási rendszerének legújabb tagja.[1] Törpebolygónak osztályozza a csillagászat azt az égitestet, amely az új bolygódefiníció egyik feltételét – a Nap körüli pályájának tisztára söprését – nem teljesíti. Ha a feltételek teljesítésének irányából vizsgáljuk, akkor pedig azok az égitestek számítanak törpebolygónak, amelyek a Nap körül keringenek és elég nagyok hozzá, hogy a saját gravitációjuk gömbformára alakítsa őket. Nem tévesztendők össze a kisbolygókkal, vagy más néven aszteroidákkal. Jelenleg öt, a feltételeket bizonyítottan teljesítő törpebolygót tartunk nyilván:

A törpebolygók két helyen fordulnak elő a Naprendszerben, a fő aszteroida övben és a Kuiper-övben. A jelenlegi öt ismert és a feltételeket bizonyítottan teljesítő objektum mellett további legalább 40 objektum esélyes, hogy elnyerje a törpebolygó státuszt a későbbiekben a konkrét megfigyelési adatok alapján, de ez a szám tovább nőhet a megfigyelési technikák fejlődése nyomán.

Az alábbi táblázat összehasonlítja a legfontosabb jellemzőket

jellemző Föld-típusú bolygók óriásbolygók törpebolygók
összetétel legfőképp szilárd anyag főként gáz szilárd anyag
térfogat a Földéhez hasonló a Földénél nagyságrendekkel nagyobb a Földnél körülbelül 4-szer kisebb
holdak száma kettő vagy kevesebb a Szaturnusznak jelenleg 60 holdját ismerjük (ebből néhány a gyűrűrendszerében van) és egyre többet fedeznek fel, a Jupiternek 63 holdja ismert 3 vagy kevesebb (de a holdak kicsik)
A Nap és a bolygók méretarányos, de nem távolságarányos képe

Holdak

A hold definíció szerint olyan égitest, amely valamely bolygó körül kering (ugyanakkor a definíciótól eltérően a kisbolygók körül keringő égitesteket – mint például az Ida kisbolygó körül keringő Dactylt – is hold néven szokás említeni). Fontos kritérium, hogy a bolygó és holdja alkotta rendszer tömegközéppontja, azaz a keringés központja a bolygó testének belsejébe essen. Amennyiben ez a feltétel nem teljesül, a párost kettősbolygónak nevezzük, ilyen esetben egyik sem tekinthető holdnak. A holdak többsége az anyabolygó hozzá képest aránytalanul nagy tömege miatt kötött forgású, vagyis a saját tengelye körüli forgása megegyezik a bolygó körüli keringés idejével, azaz ez a többség mindig ugyanazt a felét fordítja a bolygója felé. Az ez alóli kivételek a gázbolygók legkülső holdjai és Szaturnusz Hiperion holdja, amelynek forgási periódusát a Titán óriáshold hatása befolyásolja.
Vulkánkitörés a Jupiter Io holdján

A holdak eloszlása Nap körüli elhelyezkedésük szerint egyenetlen. A belső naprendszerben mindössze három példány kering a több mint százhetven ismert és tucatnyi holdként még meg nem erősített égitest közül (kevesebb, mint 1 %), a Föld holdja, és a Mars körül keringő Phobosz és Deimosz, ráadásul mindkettő inkább tekinthető különlegesnek, mintsem normál keletkezésű holdnak: a mi Holdunk egy óriási becsapódás miatti reakkrécióval keletkezett, míg a Mars körül keringő két objektum befogott aszteroida. Holdunk kis híján akkora méretű, hogy csaknem kettősbolygó lehetne a Földdel együtt, a rendszer közös tömegközéppontja alig a Föld kérge alatt található, éppen hogy a bolygó belsejében. A holdak igazi „élettere” a külső naprendszer. A legtöbb hold – szám szerint 63 – a legnagyobb bolygó, a Jupiter körül kering, mögötte alig lemaradva következik a Szaturnusz 61 természetes kísérővel.

A Naprendszerben többféle osztályozás is létezik a holdakra. Keringésük tekintetében normál és retrográd keringésű holdakat különböztetünk meg. Keletkezésük helye szerint az adott bolygó körül keletkezett holdakat és befogott aszteroidákat különböztetünk meg. Előbbiek általában nagyobb méretűek, közel körpályán keringenek, normál keringési irányúak és nagy valószínűséggel a Naprendszer akkréciós korongjának ősi anyagából keletkeztek. Utóbbiak valószínűleg szintén ebből az anyagból keletkeztek, ám valahol egészen máshol (jellemzően valamelyik aszteroida-övben, esetleg az Oort-felhőben) és valamilyen ütközés vagy gravitációs perturbáció folytán kerültek közel egy-egy bolygóhoz, amelyek hozzájuk képest hatalmas tömegvonzása befogta és más pályára állította őket. Ezen égitestek pályája általában elnyúlt ellipszis, esetenként a bolygó egyenlítői síkjával szöget bezáró, és több esetben retrográd irányú is. Méretük szerint megkülönböztetünk óriásholdakat, közepes holdakat és apró holdakat.

A holdak között is van lehetséges jelölt, amelyen az élet kifejlődhet(ett), elsődlegesen a jégkéreg alatti óceánt is tartalmazó Europé, de a Kallisztót is esélyesnek tartják a tudósok, mivel ennek a holdnak is vízóceán lehet a jégfelszíne alatt. Az óriási gázbolygók és kis holdjaik között feszülő hatalmas árapály-erők miatt a legaktívabb naprendszerbeli vulkáni tevékenység is ezeket a holdakat jellemzi. A Jupiter Io holdja a vulkánilag legaktívabb égitest az egész Naprendszerben, de több holdon is megfigyelhetők gejzírek.

Kisbolygók és meteoroidok

A Gaspra kisbolygó a Galileo szonda fotóján
A 2004 FH földsúroló kisbolygó elmozdulása a háttércsillagok előtt, földközelben. A képen jobbról átszáguldó fehér csík egy műhold nyoma.

Az előzőekben tárgyalt nagyobb égitest mellett számtalan más objektum is kering a Naprendszerben, 2008 elején mintegy 280 000 volt azon ismert aszteroidák száma, melyek mérete meghaladta az 1 kilométert, ez a bolygókeletkezés „maradéka”. A kisebb égitesteket méret és összetétel szerint is alcsoportokba szokás sorolni, ám megkülönböztetésük nem könnyű, lévén nincsenek pontos definíciók rá és az átmenet az egyes csoportok között nem kategórikus. Így ebben a maradék anyagban találhatóak a kisbolygók, üstökösök, meteoroidok, és porszemek. A kisbolygók, meteorok és a kozmikus porszemek között folyamatos a méretbeli átmenet. A felső mérethatár a bolygó-, valamint törpebolygódefiníció inverzeként vezethető le: eszerint a gömbforma felvételéhez szükséges egy tömeghatár, így amely égitest nem éri el ezt a tömeghatárt (és értelemszerűen a gömbformát), az már kisbolygónak tekinthető. A kisbolygók és üstökösmagok között pedig összetételbeli különbség tapasztalható, az előbbiek építőanyaga a vas, szén, vagy különböző szilikátok, míg az utóbbiaké különböző illó anyagok, elsősorban vízjég és más jegek, amelyekből a napsugárzás párologtatni, majd csóvát alakítani képes. A meteoroidoknak is létezik egy kézzelfogható felső határa, a 10 cm átmérő alatti kődarabokat hívjuk meteoroidnak, alsó határ azonban itt sincs, a porszem méretig meteorról beszélünk.

A Naprendszerben a különböző gravitációs hatások, korábbi perturbációk miatt mindenütt találhatók kisebb-nagyobb sziklák, aszteroidák, azonban eloszlásuk nem egyenletes, a máig fennmaradt a Naprendszer keletkezése korából egy struktúra, amelyben a kisbolygók néhány kitüntetett térrészben találhatók meg zömmel.

Fő aszteroida öv

A legtöbb ismert kisbolygó a Mars és a Jupiter között elhelyezkedő aszteroida övben kering a Nap körül. Ebben a formációban több százezer objektum kering az ekliptika síkjában a kisebb kődaraboktól egészen a törpebolygó méretig. Felfedezésük idején – az 1800-as évek elején – még úgy gondolták a korabeli csillagászok, hogy egy korábbi bolygó darabokra töréséből származó törmelékből áll a kisbolygóöv. A modern kori csillagászat megfordította a keletkezés-elméletet: ma úgy gondoljuk, hogy nem egy bolygó maradványairól, hanem egy soha össze nem állt bolygóról van szó. A bolygókeletkezés során a planetezimálok úgy növekednek és híznak végül bolygóvá, hogy a törmeléktől tisztára söprik a pályájuk mentén a teret, itt viszont pont egy ilyen tisztára nem söpört pályáról van szó. A kisbolygóövben kétségtelenül jelen levő bolygócsírákat a Jupiter gravitációs zavaró hatása akadályozta meg az összeállásban. Az ebben az övben található objektumok nagy valószínűséggel nem a Naprendszer keletkezésének korai szakaszából származó ősi anyagból állnak, hanem jelentősen átalakították őket a különböző kölcsönhatások, az ütközések, a napszél, a mikrometeoritok bombázása.

A kisbolygóövben lévő anyag rendkívül csekély, mindössze kétmilliárdod naptömeg,[52] azaz nagyjából a Hold tömegének 4%-a. Az itt található legnagyobb objektumok, a Ceres törpebolygó, a Vesta, a Pallasz és a Hügieia kisbolygók. Az övben az anyag eloszlása rendkívül ritka, az eddig rajta keresztülküldött űreszközök minden baj nélkül átjutottak rajta.

Kuiper öv

A másik, a fő aszteroida övben keringő égitesteknél valószínűleg több objektumot tartalmazó öv, amely a Neptunuszon túl terül el. A kisbolygók ezen tárházát a megfigyelési technikák korlátai miatt ma még kevésbé ismerjük, csak a legnagyobb tagjait képesek megfigyelni a csillagászok. Itt már sokkal inkább a naprendszer keletkezése óta érintetlen, ősi anyaggal találkozhatunk, elsősorban jégből álló objektumokkal, üstökösmagokkal. Az anyag eloszlása itt is rendkívül ritka és itt is a törpebolygó mérettől egészen a porszem méretig találhatóak égitestek. A legismertebb Kuiper-objektum a Plútó (és holdja a Charon).

Trójai kisbolygók

A trójai kisbolygók, vagy más néven trójai csoport egy kisbolygócsoport gyűjtőneve, amelyek speciális pályán, három bolygó és a Nap közös Lagrange-pontjai közelében keringenek, bolygójukat a keringésében megelőzik, vagy követik. Eddig a Mars, a Neptunusz és a Jupiter pályáján figyeltek meg ilyen objektumokat, előbbi kettőnél a számuk rendkívül csekély (4 és 5 darab), utóbbi esetében viszont jelentékeny számú, így leginkább a Jupiterhez kötődő égitesteket ismeri a közgondolkodás trójai kisbolygóként. Az objektumtípus egyedei a Nap körül keringenek, a bolygóval megegyező pályán, 60 fokkal előtte – az ún. L4 Lagrange-pontban – és 60 fokkal utána – az L5 Lagrange-pontban – haladva a pályán. Ezen objektumok pályaelemei rendkívül stabilak, évmilliós léptékben stabilak maradhatnak. Maguk az objektumok másutt keletkezett és itt stabil pályára került aszteroidák és üstökösmagok lehetnek.

A trójai kisbolygók elnevezése onnan ered, hogy a Homérosz Iliászából eredően a Trójai csata szereplőiről kapták az égitestjei a nevüket. A bolygó előtt haladók a „Trójaiak”, a mögötte haladók a „Görögök”.

Földközeli objektumok

Jó néhány olyan objektum is van, amelyek nem az aszteroida övekben, és nem is nagybolygók vonzásától befolyásoltan keringenek, hanem valamely korábbi gravitációs hatás miatt szabadon mozognak Nap körüli pályájukon. Ezek közül megkülönböztetett figyelmet érdemelnek a Földhöz ütközés potenciális veszélye miatt az ún. földközeli objektumok, vagy más néven földsúroló kisbolygók. Ezek az égitestek definíció szerint 1,3 CsE távolságon belül és a Föld pályáját keresztezve keringő aszteroidák, üstökösmagok és meteoroidok. Az ütközések valószínűségét a Torinói–skála írja le. A Földhöz ütközés eshetősége miatt szervezett csillagászati megfigyelési programok figyelik az eget, mivel egy nagyobb kozmikus baleset akár a földi élet teljes, vagy nagymértékű kihalásához vezet, amilyen a dinoszauruszok 65 millió évvel ezelőtti kipusztulásához vezetett és idejében fel kell ismerni a veszélyt.

A Föld körül sok anyag található az űrben, elsősorban kozmikus por és kisebb meteorok, kődarabok formájában. A porszemnyi méretű meteoroidok felhője okozza az állatöv mentén derengő állatövi fényt, a napfény derengő visszaverődését az említett kozmikus poron. A Földdel sok kozmikus anyag ütközik, naponta 20 tonna[53] anyag hullik le az űrből, amelynek nagy része elég a légkörben. Amikor a meteoroidok belépnek a légkörbe, a fényjelenséget meteornak vagy népiesen hullócsillagnak nevezzük, a hullócsillagok általában homokszem méretűek és a fényjelenséget a körülöttük ionizálódó levegő izzása okozza, nem az anyag „égése”. Néhány nagyobb meteor egészen a földfelszínig ér, ekkor már meteoritnak nevezzük.

Üstökösök

A Hale–Bopp-üstökös földközelben

Az üstökösök A Nap körül keringő, nagy excentricitású ellipszispályán mozgó kisméretű égitestek, melyek építőanyaga főként illékony anyagokból áll. Különleges tulajdonságuk, hogy felszínük a Naphoz közel kerülve felmelegszik és a felszín anyagának egy része gázzá alakul (szublimál), melynek során gáz, por és kisebb-nagyobb szilárd töredékek szabadulnak ki az üstökös fölépítésében meghatározó szerepű vízjégből. Ilyenkor „légköre” lesz, amit kómának hívnak. A napszél hatására ez a szublimált anyagfelhő elnyúlik a Nappal ellentétes irányba, ez a csóva. A felszabaduló poranyagra más erők hatnak, mint a főleg ionizált gázból álló csóvára. A csóva ezért a bolygóközi mágneses tér hatására nyeri el alakját, míg a porcsóva a Naptól sugárirányban kifelé tartó uszály alakját ölti.

Az üstökösök a Naprendszer legkülső részeiről, a Neptunuszon túlról, valószínűleg a Kuiper-övből és az Oort-felhőből kiindulva közelítik meg a Naprendszer belső területeit. A külső határvidékeken keringő égitesteknek a Naprendszer belseje felé elindulását mindig valamilyen gravitációs hatás, valamely óriásbolygó(k) perturbációja, vagy az Oort-objektumok esetében esetleg valamelyik szomszédos csillag hatása váltja ki. Az üstökössé váló égitestek pályája rendkívül sokféle lehet, nagyon sok közülük csak egyetlen egyszer jár a Nap közelében, aztán sose tér vissza. Azok azonban, amelyek valamilyen kisebb pályaperturbációt szenvednek el a nagybolygóktól, hosszú periódusú üstökösökké válnak. Amelyek több pályamódosuláson is átesnek, mivel valamely nagybolygóval – legtöbbször jellemzően a Jupiterel – többször is találkoznak, rövid periódusú, néhány évenként visszatérő üstökösökké válhatnak. A Naprendszer belső területeit leggyakrabban a már „honosult” üstökösök látogatják meg. Legismertebb közülük a Halley-üstökös. A rövid periódusú üstökösök fokozatosan elveszítik illóanyagukat és/vagy szétesnek (például a Tempel 1, vagy a Bennett üstökös), vagy kisbolygó-szerű égitestté válnak.

Az üstökösök kétféle módon kerülhetnek kapcsolatba a Földdel: meteorok, vagy becsapódások formájában. A keringésük során az üstökösök rengeteg poranyagot hagynak hátra, így valóságos anyagsávok maradnak hátra és keringenek tovább a Nap körül egy-egy keringésük után a Naprendszeren belül. Amennyiben ilyen anyagsávot keresztez a Föld Nap körüli pályáján, akkor jön létre a nagyon látványos meteorzápor, amit a köznyelv csillaghullásként ismer. Így például a leglátványosabbak közül a nyár végi Perseidák a Swift-Tuttle üstököshöz, a novemberi Leonidák pedig a Tempel-Tuttle kométához kapcsolhatók, míg a leghíresebb üstökös, a Halley, az Orionidák meteorraj szülőüstököse. A másik lehetséges kapcsolat a Földdel egy-egy becsapódás. Mivel a Naprendszer külső fertályai felől a Nap felé tartó kométák keresztezik a Föld pályáját, fennáll az ütközésveszély, amely időnként be is következik. Az ilyen ütközési események mérettől függően helyi, vagy globális katasztrófák okozói is lehetnek. Lehetséges, hogy a Tunguz-eseményt, mely 1908 júliusában történt Szibériában, egy ilyen üstökös-töredék becsapódása és szétrobbanása okozta. Egyes feltételezések szerint a vizet is az üstökösök becsapódásai szállították a Földre,[54] mivel a korai, izzó állapotban levő Földön nem maradhatott volna meg ez az anyag, annak azután kellett keletkeznie, hogy a földkéreg lehűlt.

Kentaurok

Olyan jeges, üstökösszerű égitestek, melyek az üstökösöknél kisebb excentricitásúak, a Nap körül keringenek és pályájuk a Jupiteré és a Neptunuszé közé esik. A kentaurok pályája instabil, ráadásul keresztezi egy, vagy több nagybolygó pályáját, így az élettartamuk mindössze millió éves léptékben mérhető. Az életpálya végén vagy egy nagybolygónak ütköznek, esetleg befogja őket valamelyik gázóriás (mint például a legvalószínűbb ilyen objektum, a Szaturnusz Phoebe holdja[55]), mások pedig a Napba zuhannak, megint mások pedig kiparittyázódnak a Naprendszerből. Némelyikük pályája jelenleg nem felel meg teljes mértékben a definíciónak, nem keresztezik egyik nagybolygó pályáját sem, ám ezek a pályák olyan instabilak, hogy a gázóriások pertubációs hatásai miatt hamarosan keresztezni fogják. Bár ezekről az objektumokról nagyon kevés adatunk van, éppen a nagyon instabil pályák miatt valószínűtlen, hogy ezek az objektumok ott keletkeztek, ahol ma keringenek. Helyette az eredetükre vonatkozó modellek szerint a Kuiper-öv és/vagy a szórt korong objektumai lehetnek, amelyeket valamilyen gravitációs hatás lökött beljebb Neptunuszon kívüli pályájukról.

Az objektumtípus a nevét arról kapta, hogy tagjai átmenetet jelentenek a kisbolygó és az üstökösmag között, félig ilyenek, félig olyanok. Jó néhány kentaur mutat üstökösre jellemző tulajdonságokat (gázkibocsátást és kómát), és a gravitációs pertubációk által a belső Naprendszerbe lökött kentaurok többsége rövid periódusú üstökös lesz. A legelső kentaurt, a Hidalgót 1920-ban fedezték fel, de nem tekintették egy külön égitest populáció tagjának. Külön égitesttípusként 1977-ben, a Chiron felfedezésekor határozták meg őket. A típus legnagyobb tagja a Chariklo, a maga 260 kilométeres átmérőjével, amely a fő aszteroida-öv átlagos méretű kisbolygóinak felel meg.

Neptunuszon túli égitestek

A Voyager űrszondák, amint elhagyják a naprendszert

Az összes olyan égitestet, amely a Neptunusz pályáján túl kering a Nap körül, Neptunuszon túli égitestnek nevezzük. A legelsőként felfedezett ilyen objektum az 1930-ban felfedezett, sokáig a kilencedik bolygóként ismert Plútó volt. A következő Neptunuszon túli égitest felfedezésére 62 évet kellett várni, az (15760) 1992 QB1 jelű objektum 1992-es felfedezéséig, annak ellenére, hogy már a Plutó felfedezésekor megsejtették, hogy több ilyen aszteroidának is kell lennie az adott térségben. Az ezt követő szisztematikus kutatásban ezres nagyságrendben találtak 50 és 2500 kilométer közötti méretű égitesteket a csillagászok a Naptunuszon túli pályán. Ma az Eris az égitesttípus legnagyobb ismert tagja, amely egyben a legtávolabbi, közvetlenül megfigyelt, naprendszerbeli objektum is.

A Neptunuszon túli égitestek fő altípusai:

A felhő a Kuiper-övhöz hasonlóan két fő részre osztható:
  • Belső Oort-felhő: korong alakú, nagy kiterjedésű, jeges objektumokból álló öv.
  • Külső Oort-felhő: gömb alakú, a Naprendszert körülölelő, az előbbihez hasonló jeges égitestekből álló gömbhéj.
A Neptunuszon túli objektumok megfigyelési programjai során az Oort-felhő égitestjeit nem sikerült még megfigyelni, mindössze négy olyan égitestet találtak a csillagászok – köztük a legnagyobb méretű Szednával – amelyek talán a belső Oort-felhő tagjai lehetnek. Ezek bár a keringési távolságaik szerint nem oda tartoznak, a felhő alakjának nem egészen pontos ismerete miatt mégis komoly esélye van, hogy ezek Oort-objektumok.